Announcements

1) Quiz Tuesday, practice problems on Canvas.

Recall: We were solving

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t) \\
& y(0)=0, \quad y^{\prime}(0)=1
\end{aligned}
$$

we got

$$
\begin{aligned}
& \mathcal{L}(y)(s)= \\
= & \frac{-1}{s+2}+\frac{1}{s+1}+\frac{1}{2} \frac{1}{s+1}-\frac{1}{5} \frac{1}{s+2}+\frac{1}{10} \frac{1-3 s}{s^{2}+1} \\
= & \frac{3}{2} \frac{1}{s+1}-\frac{6}{5} \frac{1}{s+2}+\frac{1}{10} \frac{1}{s^{2}+1}-\frac{3}{10} \frac{s}{s^{2}+1}
\end{aligned}
$$

Using linearity of the inverse Laplace transform,

$$
\begin{aligned}
& y(t)= \frac{3}{2} \mathcal{L}^{-1}\left(\frac{1}{s+1}\right)-\frac{6}{5} f^{-1}\left(\frac{1}{s+2}\right) \\
&+\frac{1}{10} \mathcal{L}^{-1}\left(\frac{1}{s^{2}+1}\right)-\frac{3}{10} f^{-1}\left(\frac{s}{s^{2}+1}\right) \\
&= \frac{3}{2} e^{-t}-\frac{6}{5} e^{-2 t} \\
&+\frac{1}{10} \sin (t)-\frac{3}{10} \cos (t)
\end{aligned}
$$

using a table

Impulse
(Section 7.9$)$
Idea: models short term, violent interactions (i.e. particle collision, bashing objects with hammers, etc.)

Wishful Thinking

If only there was a function $\delta(t)$ with

$$
\begin{aligned}
& \int_{0}^{\infty} f(t) \delta(t) d t \\
& =f(0)
\end{aligned}
$$

for all continuous functions f. Collision takes place at $t=0$.

If the collision occurs at time T,

$$
\begin{gathered}
\int_{0}^{\infty} f(t) \delta(t-T) d t \\
=f(T)
\end{gathered}
$$

Diraćs Motivation

Orthonormal bases in finite dimensional rector spaces

Suppose $e_{1}, e_{2}, \ldots, e_{n}$ is the standard basis of \mathbb{R}^{n}.

For example, in \mathbb{R}^{3},

$$
\begin{aligned}
& e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \\
& e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

For a general vector

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \text { in } \mathbb{R}^{n} \text {, can }
$$

write

$$
v=\sum_{i=1}^{n} v_{i} e_{i}
$$

So for example,

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1 \cdot e_{1}+2 e_{2}+3 e_{3}
$$

In order to capture the $i^{\text {th }}$ coordinate of V, dot-product v with e_{i}

Quantum Mechanics

States - typically functions with $\int_{-\infty}^{\infty}|\psi(t)|^{2} d t=1$ are the objects of quantum mechanics. A state is a measurement of the system.
measurements $=$ the values of ψ at any given point t Hence, we want a function $\delta(t)$ with

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \psi(t) \delta(t) d t=\psi(0), \\
& \int_{-\infty}^{\infty} \psi(t) \delta(t-T)=\psi(T)
\end{aligned}
$$

If ψ, φ are complex-valued functions of a real number t, define

$$
\frac{\psi \cdot \varphi=\int_{-\infty}^{\infty} \psi(t) \overline{\varphi(t)} d t}{- \text { if } \int_{-\infty}^{\infty}|\psi(t)|^{2} d t, \int_{-\infty}^{\infty}|\varphi(t)|^{2} d t}
$$

are finite, the dot product always exists

We want a function δ
with

$$
f \cdot \delta_{T}=f(T)
$$

for all admissable functions f.

Preliminaries

Let $\quad \delta_{h}(x)= \begin{cases}\frac{1}{h}, & 0<x<h \\ 0, & \text { otherwise }\end{cases}$ h is a real number.

Picture

If f is continuous on $(-\infty, \infty)$,
consider

$$
\begin{aligned}
& \lim _{h \rightarrow 0}^{\infty} f(t) \delta_{h}(t) d t \\
= & \lim _{h \rightarrow 0} \int_{0}^{h} f(t) \frac{1}{h} d t \\
= & \lim _{h \rightarrow 0} \frac{\int_{0}^{h} f(t) d t}{h}
\end{aligned}
$$

Let g be an antiderivative for f.

By the fundamental theorem of calculus, the limit becomes

$$
\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}
$$

$=g^{\prime}(0)$ by definition of the derivative

$$
=f(0)
$$

Since $g^{\prime}(t)=f(t)$.
$\delta_{h} \rightarrow \delta$ but not in any
way you are familiar with. and δ is not a function!

If δ were a function, it would be zero everywhere but at $t=0$, so the integral against δ would be zero.
δ is a measure or a distribution.

Nevertheless (Laplace transform)

We can write (formally)

$$
\begin{aligned}
\mathcal{L}(\delta)(s) & =\int_{0}^{\infty} e^{-s t} \delta(t) d t \\
& =1
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathcal{L}\left(\delta_{T}\right)(s) & =\int_{0}^{\infty} e^{-s t} \delta(t-T) d t \\
& =e^{-s T}
\end{aligned}
$$

Example 1: A lo kg mass is attached to a spring. The mass is released from rest 2 m below equilibrium. There are no external damping forces on the system and the spring constant is $k=9$ After $\frac{\pi}{4}$ seconds, the mass is struck by a hammer with a force of $2 N$. Find a formula for the position $x(t)$ of the mass.

$$
\begin{gathered}
10 x^{\prime \prime}(t)+9 x(t)=2 \delta(t-\pi / 4) \\
x(0)=2, x^{\prime}(0)=0 .
\end{gathered}
$$

Take Laplace Transform of both sides:

$$
\begin{aligned}
10 y\left(x^{\prime \prime}\right)(s) & +9 y(x)(s) \\
= & 2 y\left(\delta_{\pi / 4}\right)(s) \\
= & 2 e^{-\frac{\pi s}{4}}
\end{aligned}
$$

Using properties of the Laplace +ransform,

$$
\begin{gathered}
2 e^{-\frac{\pi s}{4}}=10\left(s^{2} \mathcal{L}(x)(s)-s=2\right. \\
\left.-\left(x^{\prime}(0)\right)\right)+9 f(x)(s) \\
=0 \\
=10 s^{2} f(x)(s)-20 s+9 f(x)(s)
\end{gathered}
$$

So solving,

$$
\begin{aligned}
& 2 e^{-\frac{\pi s}{4}}+20 s=\left(10 s^{2}+9\right) \mathcal{L}(x)(s), \\
& \text { and } \\
& \mathcal{L}(x)(s)=\frac{2}{10} \frac{e^{-\pi s / 4}}{s^{2}+9 / 10}+2 \frac{s}{s^{2}+\frac{9}{10}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}(x)(s) & =\frac{2}{10} \frac{e^{-\pi s / 4}}{s^{2}+a / 10}+2 \frac{s}{s^{2}+\frac{9}{10}} \\
& =\frac{1}{5} \frac{e^{-\pi s / 4}}{s^{2}+\frac{9}{10}}+2 \frac{s}{s^{2}+\frac{9}{10}}
\end{aligned}
$$

Taking the inverse Laplace transform,

$$
\begin{aligned}
& x(t)=\frac{1}{5} \mathcal{L}^{-1}\left(\frac{e^{-\pi s / 4}}{s^{2}+\frac{9}{10}}\right)+2 \cos \left(\frac{3}{\sqrt{10}} t\right) \\
&=2 \operatorname{for}\left(\frac{3}{\sqrt{10}} t\right) \\
&+\frac{1}{5} \sin \left(\frac{3}{\sqrt{10}}(t-\pi / 4)\right) \cup(t-\pi / 4)
\end{aligned}
$$

